

计算系统概论A Introduction to Computing Systems (CS1002A.03)

陈俊仕 cjuns@ustc.edu.cn 2023 Fall

计算机科学与技术学院

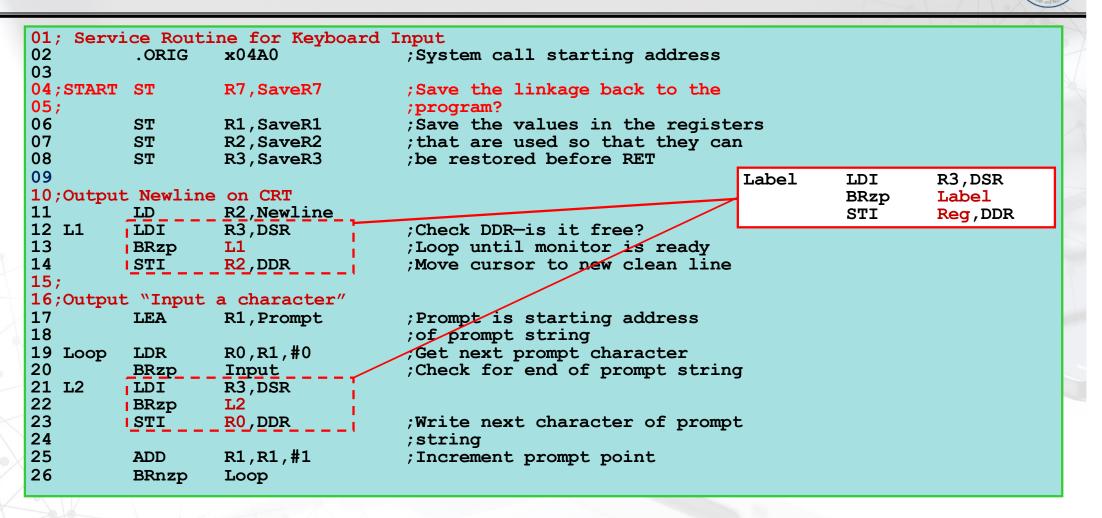
School of Computer Science and Technology

1	Review
2	Subroutines
3	Control Instructions for Subroutines
4	Memory Model for Program Execution
5	The Stack
6	Implementing Functions in C

1	Review
2	Subroutines
3	Control Instructions for Subroutines
4	Memory Model for Program Execution
5	The Stack
6	Implementing Functions in C

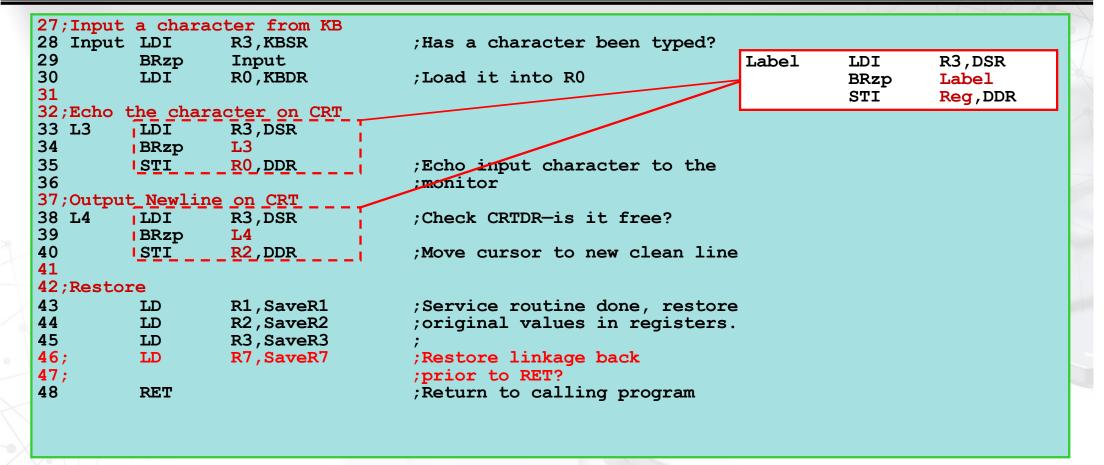
Subroutines

A subroutine is a program fragment that...


- Resides in user space (i.e, not in OS)
- Performs a well-defined task
- Is invoked (called) multiple times by a user program
- Returns control to the calling program when finished

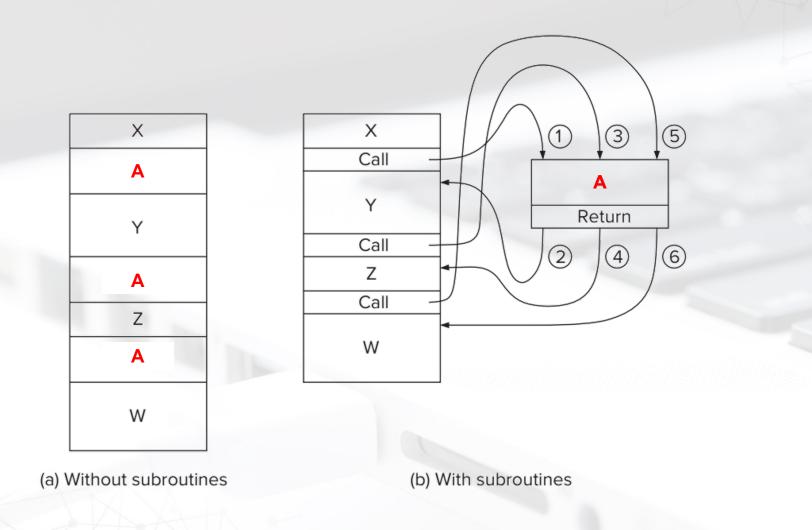
Virtues

- Reuse code without re-typing it (and debugging it!)
- Divide task into parts (or among multiple programmers)
- Use vendor-supplied library of useful routines that one software engineer writes a program that requires such fragments and another software engineer writes the fragments.
 - math library
 - square root, sine, and arctangent, etc.


In C language, called function; In other languages, called procedures, subroutines, methods ...

A simple illustration of a part of a program

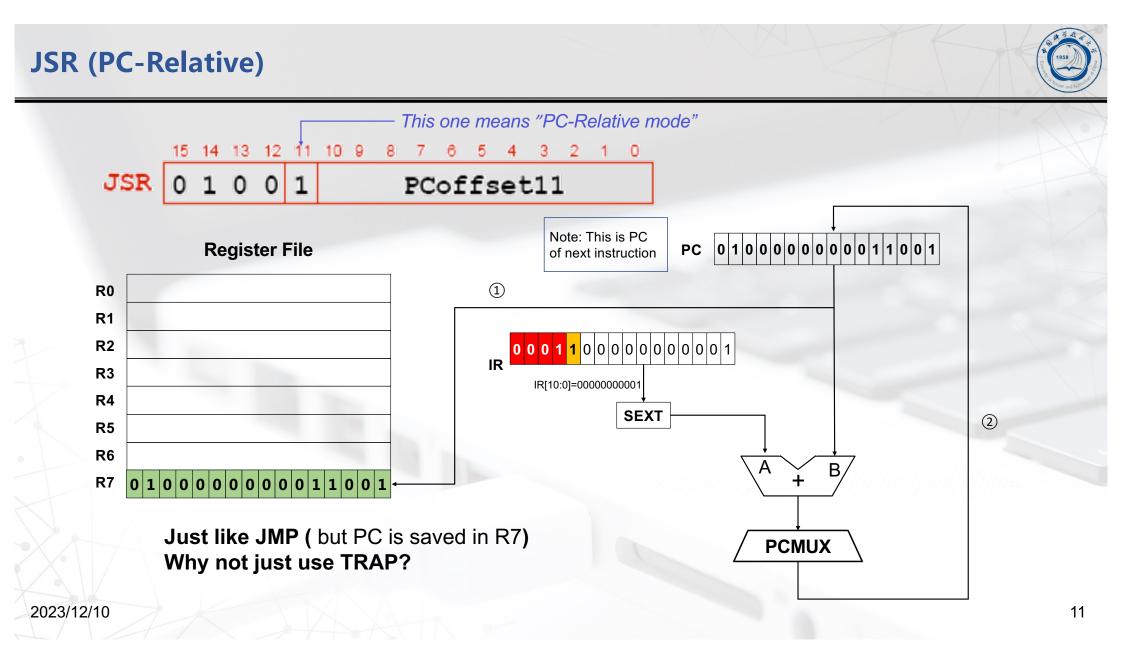
A simple illustration of a part of a program



A simple illustration of a part of a program

49;Memory	for reg	isters saved			
50;	SaveR7	.FILL x0000			
51	SaveR1	.FILL x0000			
52	SaveR2	.FILL x0000			
53	SaveR3	.FILL x0000			
54					
55	DSR	.FILL xF3FC			
56	DDR	.FILL xF3FF			
57	KBSR	.FILL xF400			
58	KBDR	.FILL xF401			
59;					
59	Newline	.FILL x000A	;ASCII	code for	newline
60	Prompt	.STRINGZ "In	put a charad	cter>"	
61	-	.END	•		

The Call/Return Mechanism



Itline	
1	Review
2	Subroutines
3	Control Instructions for Subroutines
4	Memory Model for Program Execution
5	The Stack
6	Implementing Functions in C

Control Instructions for Subroutines

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	n	z	р				PC	offs	set9			
0	1	0	0	1					PC	offs	et11			0 0 0 0 0 0 0 0 0 0 0 0	
0	1	0	0	0	0	0	В	ase	R	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	В	ase	R	0	0	0	0	0	0
1	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0
											•	•			
1	1	1	1	0	0	0	0			Tr	apV	'ecto	or8		
	0 0 1 1	 0 0 1 0 1 0 1 1<	0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0	0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 0 0 0 n 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	0 0 0 n z 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0	0 0 0 n z p 0 1 0 0 1 · · 0 1 0 0 1 · · 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	0 0 0 n z p 0 1 0 0 1 x	0 0 0 n z p 0 1 0 0 1 s s s 0 1 0 0 1 s s s s 1 0 0 0 0 0 0 s s s 1 1 0 0 0 0 0 0 s	0 0 0 n z p 0 1 0 0 1 $::::::::::::::::::::::::::::::::::::$	0 0 0 n z p PC 0 1 0 0 1 $V = V = V = V = V = V = V = V = V = V =$	0 0 0 n z p PCoffs 0 1 0 0 1 V	0 0 0 n z p $V \in V \in V$ 0 1 0 0 1 $V \in V \cap V \in V \in V \in V \in V \in V$ $V \in V \cap V \cap V \in V \in V \in V \in V \in V \in V$ 0 1 0 0 1 $V \cap V \cap V \cap V \cap V \cap V$ $V \cap V \cap V \cap V \cap V \cap V \cap V$ $V \cap V \cap V \cap V \cap V \cap V \cap V \cap V$ 1 0 0 0 0 0 $V \cap V \cap V \cap V \cap V \cap V$ $V \cap V \cap V \cap V \cap V \cap V \cap V$ 1 1 0 0 0 0 0 $V \cap V \cap V \cap V \cap V \cap V$ 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 0 0 n z p $PC \cup IS \cup I$	0 1 0 0 1 0 1 0 0 1 $E = E = E = E = E = E = E = E = E = E =$

RET instruction

RET – return instruction

• How to return

- Place address in R7 in PC, Return the execution to the last calling point.

• PC \leftarrow (R7)

 15 14 13 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 RET (JMP R7)
 1
 1
 0
 0
 0
 0
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Example: Negate the value in R0

TwosComp	NOT	R0,R0	;flip bits
	ADD	R0,R0,#1	;add one
	RET		;return to caller

To call from a program

;need to compute R4	= R1-R3	
ADD	<mark>R0</mark> ,R3, # 0	;copy R3 to R0
JSR	TwosComp	;negate
ADD	R4,R1, <mark>R0</mark>	;add to R1

Using Subroutines

Programmer must know

- Address: or at least a label that will be bound to its address
- Function: what it does
 - NOTE: The programmer does not need to know how the subroutine works, but what changes are visible in the machine' s state after the routine has run
- •Arguments: what they are and where they are placed
- Return values: what they are and where they are placed

Passing Information To Subroutines

Argument(s)

- •Value passed in to a subroutine is called an argument
- This is a value needed by the subroutine to do its job

• Examples

- TwosComp: R0 is number to be negated
- OUT: R0 is character to be printed
- PUTS: R0 is address of string to be printed

■How?

- In registers (simple, fast, but limited number)
- In memory (many, but awkward, expensive)
- Both

Getting Values From Subroutines

Return Values

- •A value passed out of a subroutine is called a return value
- This is the value that you called the subroutine to compute

• Examples

- TwosComp: negated value is returned in R0
- GETC: character read from the keyboard is returned in R0

How?

- Registers, memory, or both
- •Single return value in register most common

A problem when dealing with subroutines

We have known that every time an instruction loads a value into a register, the value that was previously in that register is lost. Thus, we need to save the value in a register

- •if that value will be destroyed by some subsequent instruction, and
- if we will need it after that subsequent instruction.

■ Caution Using JSR, JSRR, and TRAP

•You MUST save R7 if you call any other subroutine using JSR, JSRR or TRAP

Caution Using TRAPs (*"caller-save" in User code***)**

		LEA	R3, BLOCK	;Init. To first loc.
		LD	R6,ASCII	;Char->digit template
		LD	R7, COUNT	;Init. to 10
	AGAIN	TRAP	x 23	;Get char
		ADD	R0,R0,R6	;Convert to number
		STR	R0,R3,#0	;Store number
		ADD	R3,R3,#1	;Incr pointer
		ADD	R7,R7,-1	;Decr counter
		BRp	AGAIN	;More?
I		BRnzp	NEXT_TASK	
-	ASCII	.FILL	xFFD0 ;Negat:	ive of x0023
	COUNT	.FILL	#10	
	BLOCK	.BLKW	#10	

Caution Using TRAPs (*"caller-save" in User code***)**

	LEA	R3, BLOCK	;Init. To first loc.
	LD	R6,ASCII	;Char->digit template
	LD	R7, COUNT	;Init. to 10
AGAIN	ST	R7,SaveR7	
	TRAP	x 23	;Get char
	LD	R7,SaveR7	
	ADD	R0,R0,R6	;Convert to number
	STR	R0,R3,#0	;Store number
	ADD	R3,R3,#1	;Incr pointer
	ADD	R7,R7,-1	;Decr counter
	BRp	AGAIN	;More?
	BRnzp	NEXT_TASK	
SaveR7	.BKLW	1	
ASCII	.FILL	xFFD0 ;Negati	ive of x0023
COUNT	.FILL	#10	
BLOCK	.BLKW	#10	

Saving and Restoring Registers

■ Called routine => *"callee-save"*

• Before start, save registers that will be altered

```
(except output regs)
```

• Before return, restore those same registers

(again, except output regs)

• Values are saved by storing them in memory

■ Calling routine => "caller-save"

- If register value needed later, save register destroyed by own instructions or
 - by called routines (if known)
 - Save R7 before TRAP
- Or avoid using those registers altogether

LC-3: By convention, callee-saved when possible

• Other ISAs use a more efficient combination of caller- and callee-save

Saving and Restore Registers

Like service routines, must save and restore registers

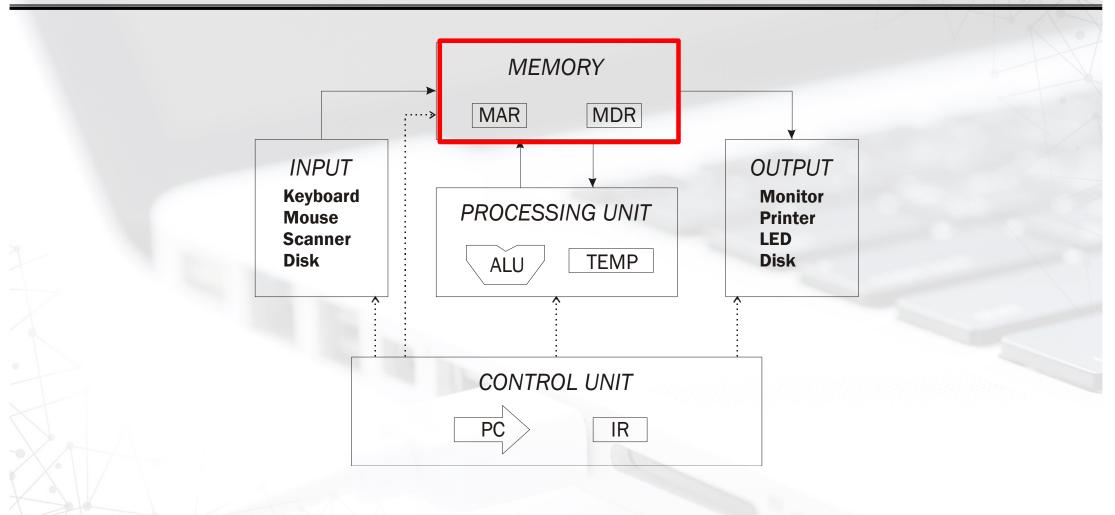
• Who saves what is part of the calling convention

Generally use "callee-save" strategy, except for return values

- Same as trap service routines
- Save anything that subroutine alters internally that shouldn't be visible when the subroutine returns
- Restore incoming arguments to original values (unless overwritten by return value)

Remember

- You MUST save R7 if you call any other subroutine or trap
- •Otherwise, you won't be able to return!


Subroutine Template

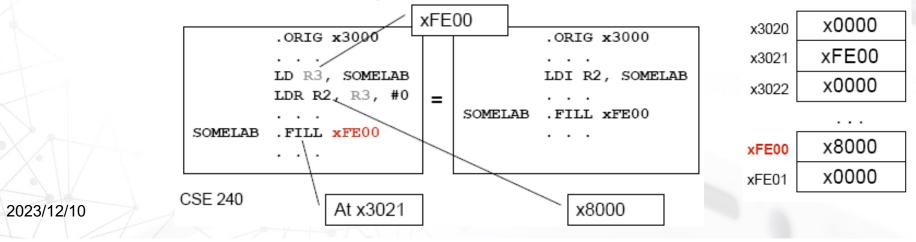
01 SUB NAME 02 ;Register Saving 03 ST R0, SUB R0 04 ST R1, SUB R1 05 ••• 06 ST R6, SUB R6 ST R7, SUB_R7;Return address 07 08 09 ;***Code*** 10 11 ;Register Restoring 12 LD R0, SUB R0 LD R1, SUB R1 13 14 ••• LD R6, SUB R6 15 LD R7, SUB R7 16 ;Return address 17 RET

Outline		the second secon
1	Review	A
2	Subroutines	
3	Control Instructions for Subroutines	
4	Memory Model for Program Execution	
5	The Stack	
6	Implementing Functions in C	

Review: Memory in Von Neumann Model

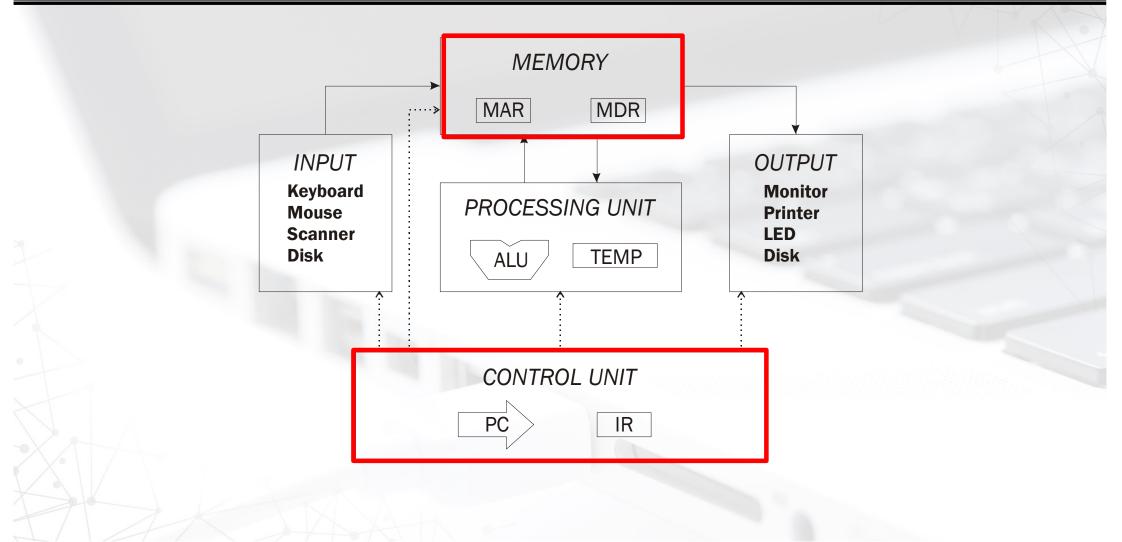
Review: Using Memory

■ Memory		Memory
	Address	Value
●Just a big "array"	x0000	x00A0
• "Indexed" by address	x0001	x5007
ullet Accessed with loads and stores instructions	x0002	x0201
LD/LDR/LDI	x0003	x0203
•Read a word out of memory	x0004	x3002
• Use different addressing mode		
■ ST/STR/STI	xFFFC	x5007
	xFFFD	x0201
• Place a word in memory	xFFFE	x0203
• Use different addressing mode	xFFFF	x3002


Review: Using Memory

Problem

- What if the memory you want to access is far away?
- LD/ST won't work (PC-relative)
- LDR/STR won't work alone (need to get address in register)


Solution: LDI/STI

- Place *address* of far away value nearby
- •Load address, then load/store from that

Memory Model for Function Calls

Problem

How do we allocate memory during the execution of a program written in C?

- Programs need memory for code and data such as instructions, global and local variables, etc.
- Modern programming practices encourage many (reusable) functions, callable from anywhere.
- Some memory can be statically allocated, since the size and type is known at compile time.
- Some memory must be allocated dynamically, size and type is unknown at compile time.

Motivation

Why is memory allocation important? Why not just use a memory manager?

- Allocation affects the performance and memory usage of every C, C++, Java program.
- •Current systems do not have enough registers to store everything that is required.
- •Memory management is too slow and cumbersome to solve the problem.
- Static allocation of memory resources is too inflexible and

inefficient, as we will see.

Goals

What do we care about?

- Fast program execution
- Efficient memory usage
- Avoid memory fragmentation
- Maintain data locality
- •Allow recursive calls
- Support parallel execution
- •Minimize resource allocation
- •Memory should never be allocated for functions that are not executed.

Scope: Local vs. Global

A variable' s declaration assists the compiler in managing the storage of that variable.

■In C, a variable' s declaration conveys three pieces of information to the compiler:

• the variable's identifier and its type

- The first two of these, identifier and type, the C compiler gets explicitly from the variable's declaration.

• the variable's scope-

- The third piece, scope, the compiler infers from the position of the declaration within the code.
 The scope of a variable is the region of the program in which the variable is "alive" and accessible.
- The good news is that in C, there are only two basic types of scope for a variable. Either the variable is *global* to the entire program, or it is *local*, or private, to a particular block of code.

A C program that demonstrates nested scope.


```
1 #include <stdio.h>
                                                                      C allows this: as long as the different
2
                                                                      variables sharing the same name are
3 int globalVar = 2; // This variable is a global variable
                                                                      declared in separate blocks.
4
5 int main(void)
6
     int localVar = 3; // This variable is local to main
7
8
9
     printf("qlobalVar = %d, localVar = %d n", qlobalVar, localVar);
10
11
     // Creating a new sub-block within main
12
         int localVar = 4; // This local to the sub-block within main
13
14
         printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
15
16
      }
17
18
     printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
19 }
```

If we compile and execute this code, the output generated looks as follows:

globalVar = 2, localVar = 3
globalVar = 2, localVar = 4
globalVar = 2, localVar = 3

Initialization of Variables

double width;

```
double pType = 9.44;
```

```
double mass = 6.34E2;
```

```
double verySmallAmount = 9.1094E-31;
```

double veryLargeAmount = 7.334553E102;

int average = 12;

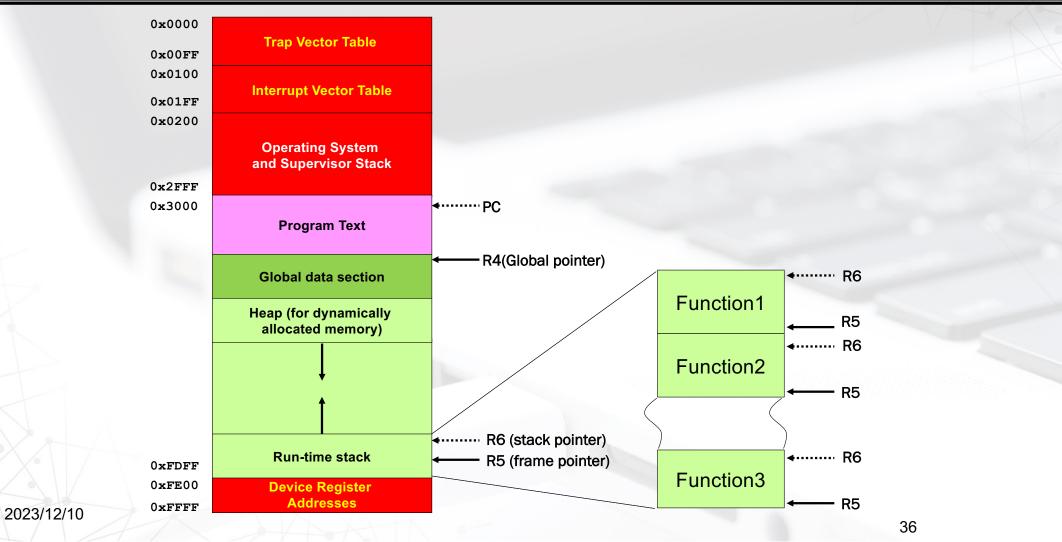
```
int windChillIndex = -21;
```

```
int unknownValue;
```

```
int mysteryAmount;
```

```
bool flag = false;
```

What initial value will a variable have if it has no initializer? In C, by default,


- Local variables start with an undefined value. That is, local variables have garbage values in them, unless we explicitly initialize them in our code. It is standard coding practice to explicitly initialize local variables within their declarations.
- Global variables, in contrast, are initialized to 0.

```
char car = 'A'; // single quotes specify a single ASCII character
```

```
char number = '4'; // single quotes specify a single ASCII characte
```

Memory Model in the LC-3

Allocating Space for Variables

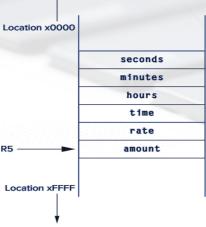
There are two regions of memory in which declared variables in C are allocated storage:

- the global data section: Variables that are global are allocated storage in the global data section.
- the *run-time stack*: Local variables are allocated storage on the run-time stack.

A C program that performs a simple network rate calculation

1 #include <stdio.h> 2 int main(void) 3 { 4 int amount; // The number of bytes to be transferred // The average network transfer rate 5 int rate; 6 int time: // The time, in seconds, for the transfer // The number of hours for the transfer 7 int hours; 8 int minutes: // The number of mins for the transfer 9 int seconds: // The number of secs for the transfer 10 11 // Get input: number of bytes and network transfer rate 12 printf("How many bytes of data to be transferred? "); 13 scanf("%d", &amount); 14 printf("What is the transfer rate (in bytes/sec)? "); 15 scanf("%d", &rate); 16 17 // Calculate total time in seconds 18 time = amount / rate; 19 20 // Convert time into hours, minutes, seconds 21 hours = time / 3600; // 3600 seconds in an hour 22 minutes = (time % 3600) / 60; // 60 seconds in a minute 23 seconds = ((time % 3600) % 60); // remainder is seconds 24 25 // Output results 26 printf("Time : %dh %dm %ds\n", hours, minutes, seconds); 27 }

Identifier	Туре	Location (as an offset)	Scope	Other info
amount	int	0	main	
hours	int	-3	main	
minutes	int	-4	main	
rate	int	-1	main	***
seconds	int	-5	main	
time	int	-2	main	


The compiler' s symbol table when it compiles the code

The stack frame from function

main of the code

- This function has five local variables.
- R5 is the frame pointer and points to the first local

variable.

R5

Outli	ne	A CONTRACT OF THE OWNER OWNER OF THE OWNER OWNE
	1	Review
	2	Subroutines
	3	Control Instructions for Subroutines
1	4	Memory Model for Program Execution
K	5	The Stack
	6	Implementing Functions in C

Stack: An Abstract Data Type

- An important abstraction that you will encounter in many applications.
- The fundamental model for execution of C, Java, Fortran, and many other languages.
- We will describe two uses of the stack:
 - Evaluating arithmetic expressions
 - Store intermediate results on stack instead of in registers
 - Function calls
 - -Store parameters, return values, return address, dynamic link
 - Interrupt-Driven I/O
 - Store processor state for currently executing program

Stack Data Structure

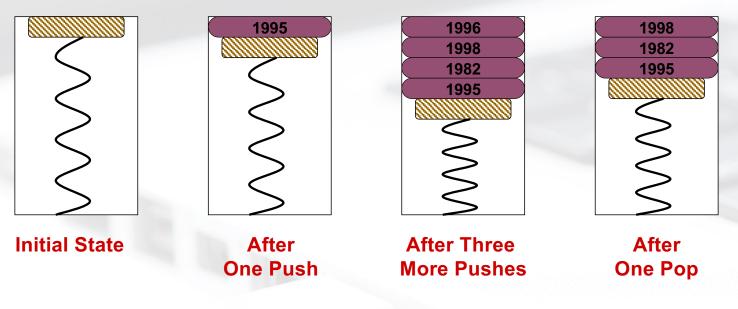
A LIFO (last-in first-out) storage structure

- The first thing you put in is the last thing you take out
- The last thing you put in is the first thing you take out
- This means of access is what defines a stack, not the specific implementation.

Two main operations

- PUSH: add an item to the stack
- POP: remove an item from the stack

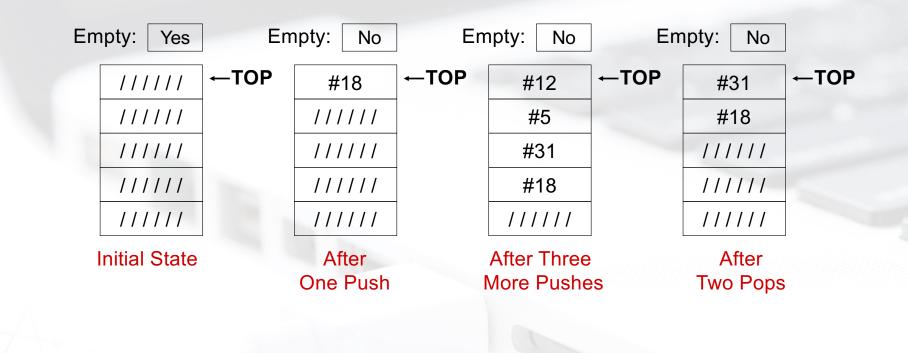
Error conditions:


- Underflow (try to pop from empty stack)
- Overflow (try to push onto full stack)

A register (eg. R6) holds address of top of stack (TOS)

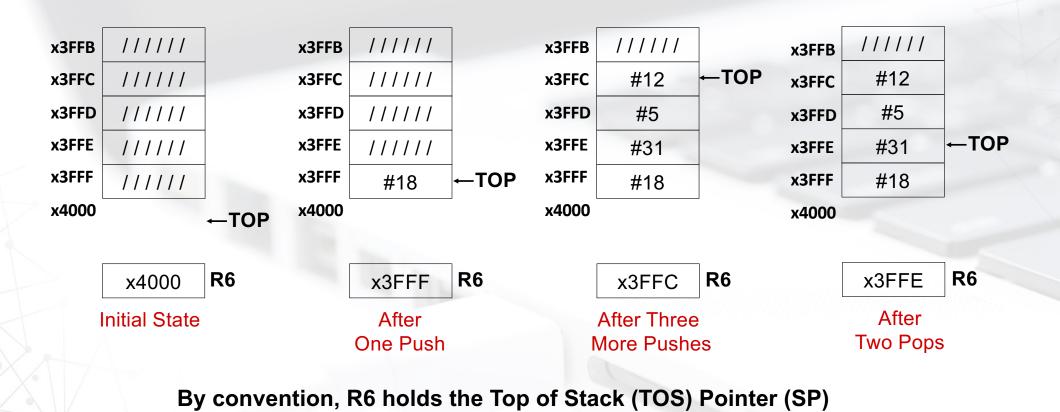
A Physical Stack

A Contraction of the second se

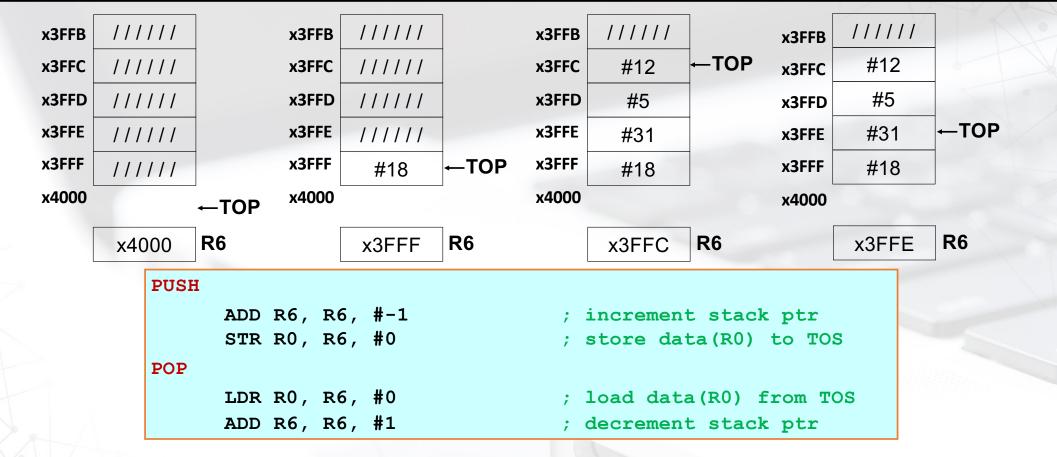

Coin holder

Last quarter in is the first quarter out (LIFO)

A Hardware Stack Implementation


Data items move between registers

A Software Stack Implementation



Data items don't move in memory, just our idea about where TOP of the stack is

Basic Push and Pop Code

Note: Stacks can grow in either direction (toward higher address or toward lower addresses)

Pop with Underflow Detection

If we try to pop too many items off the stack, an underflow condition occurs.

• Check for underflow by checking TOS before removing data.

• Return status code in R5 (0 for success, 1 for underflow)

POP	LD R	R1,	EMPI	ſY		
	ADD R	R2,	R6,	R1	;	Compare stack pointer
	BRz U	JNDE	R		;	with x3FFF
	LDR R	RO,	R6,	#0	;	The actual 'pop'
	ADD R	R6,	R6,	#1	;	Adjust stack pointer
	AND R	R5,	R5,	# 0	;	Success: return $R5 = 0$
	RET					
UNDER	AND R	R5,	R5,	# 0	;	Underflow: return R5 = 1
	ADD R	R5,	R5,	#1		
	RET					
EMPTY	.FILL	L xC	000		;	EMPTY = -x4000

Push with Overflow Detection

If we try to push too many items onto the stack, an overflow condition occurs.

- Check for underflow by checking TOS before adding data.
- •Return status code in R5 (0 for success, 1 for overflow)

PUSH	LD	R1,	FULI	_		
	ADD	R2,	R6,	R1	;	Compare stack pointer
	BRz	OVE	R		;	with x4004
	ADD	R6,	R6,	#-1	;	Adjust stack pointer
	STR	R0,	R6,	# 0	;	The actual 'push'
	AND	R5,	R5,	# 0	;	Success: return $R5 = 0$
	RET					
OVER	AND	R5,	R5,	# 0		
	ADD	R5,	R5,	#1	;	Overflow: return R5 = 1
	RET					
FULL	.FI	LL X(2005		;	FULL = -x3FFB

The final code for PUSH & POP in LC-3 - 1

POP	ST R2,Save2	; save, needed by POP
	ST R1,Savel	; save, needed by POP
	LD R1, EMPTY	; EMPTY contains -x3FFF
	ADD R2, R6, R1	; Compare stack pointer with x3FFF
	—	; Branch if stack empty
	LDR R0, R6, #0	; The actual `pop'
	ADD R6, R6, #1	; Adjust stack pointer
	RET	
EMPTY	.FILL xC000	; EMPTY = $-x4000$
PUSH	ST R2,Save2	; save, needed by PUSH
	ST R1,Savel	; save, needed by PUSH
	LD R1, FULL	
	ADD R2, R6, R1	; Compare stack pointer
	BRz Fail_exit	; with x4004
	ADD R6, R6, #-1	; Adjust stack pointer
	STR R0, R6, #0	; The actual `push'
	RET	
FULL	.FILL xC005	; FULL = $-x3FFB$

The final code for PUSH & POP in LC-3 - 1

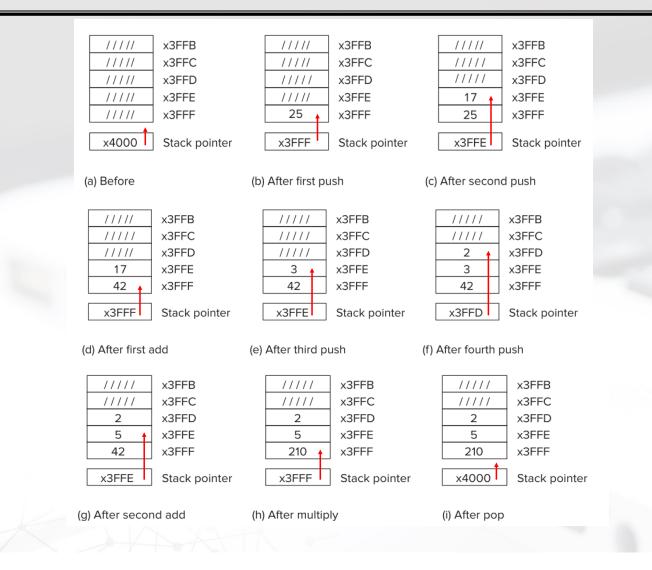
POP	ST R2,Save2	; save, needed by POP
	ST R1,Savel	; save, needed by POP
	LD R1, EMPTY	; EMPTY contains -x3FFF
	ADD R2, R6, R1	; Compare stack pointer with x3FFF
	BRz Fail_exit	; Branch if stack empty
	LDR R0, R6, #0	; The actual `pop'
	ADD R6, R6, #1	; Adjust stack pointer
	BRnzp Success_exit	
EMPTY	.FILL xC000	; EMPTY = $-x4000$
PUSH	ST R2,Save2	; save, needed by PUSH
	ST R1,Savel	; save, needed by PUSH
	LD R1, FULL	
	ADD R2, R6, R1	; Compare stack pointer
	BRz Fail_exit	; with x4004
	ADD R6, R6, #-1	; Adjust stack pointer
	STR R0, R6, #0	; The actual `push'
	BRnzp Success_exit	
FULL	.FILL xC005	; FULL = $-x3FFB$

The final code for PUSH & POP in LC-3 - 2

Save1	.FILL x0000					
Save2	.FILL x	0000				
Success_exit	LD R1,	Save1	;Restore reg values			
	LD R2,	Save2	;			
	AND R5, RET	R5, #0	; Success: return R5 = 0			
;						
Fail_exit	LD R1,	Save1	;Restore reg values			
	LD R2,	Save2				
	AND R5,	R5, #0				
	•	R5, #1	; Overflow: return R5 = 1			
	RET					

Arithmetic Using a Stack

Instead of registers, some ISA's use a stack for source and destination operations: a zero-address machine.


- Example: ADD instruction pops two numbers from the stack, adds them, and pushes the result to the stack.
 - ADD vs. ADD R0,R1,R2

Evaluating (A+B)•(C+D) using a stack:

(25+17) x (3+2)

