
陈俊仕
cjuns@ustc.edu.cn

2023 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 8
Data Structures

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Subroutines

n A subroutine is a program fragment that. . .

l Resides in user space (i.e, not in OS)

l Performs a well-defined task

l Is invoked (called) multiple times by a user program

l Returns control to the calling program when finished

n Virtues

l Reuse code without re-typing it (and debugging it!)

l Divide task into parts (or among multiple programmers)

l Use vendor-supplied library of useful routines that one software engineer writes a
program that requires such fragments and another software engineer writes the fragments.

— math library

— square root, sine, and arctangent, etc.

n In C language, called function; In other languages, called procedures, subroutines,
methods ...

2023/12/10 5

A simple illustration of a part of a program

01; Service Routine for Keyboard Input
02 .ORIG x04A0 ;System call starting address
03
04;START ST R7,SaveR7 ;Save the linkage back to the
05; ;program?
06 ST R1,SaveR1 ;Save the values in the registers
07 ST R2,SaveR2 ;that are used so that they can
08 ST R3,SaveR3 ;be restored before RET
09
10;Output Newline on CRT
11 LD R2,Newline
12 L1 LDI R3,DSR ;Check DDR—is it free?
13 BRzp L1 ;Loop until monitor is ready
14 STI R2,DDR ;Move cursor to new clean line
15;
16;Output “Input a character”
17 LEA R1,Prompt ;Prompt is starting address
18 ;of prompt string
19 Loop LDR R0,R1,#0 ;Get next prompt character
20 BRzp Input ;Check for end of prompt string
21 L2 LDI R3,DSR
22 BRzp L2
23 STI R0,DDR ;Write next character of prompt
24 ;string
25 ADD R1,R1,#1 ;Increment prompt point
26 BRnzp Loop

Label LDI R3,DSR
BRzp Label
STI Reg,DDR

2023/12/10 6

A simple illustration of a part of a program

27;Input a character from KB
28 Input LDI R3,KBSR ;Has a character been typed?
29 BRzp Input
30 LDI R0,KBDR ;Load it into R0
31
32;Echo the character on CRT
33 L3 LDI R3,DSR
34 BRzp L3
35 STI R0,DDR ;Echo input character to the
36 ;monitor
37;Output Newline on CRT
38 L4 LDI R3,DSR ;Check CRTDR—is it free?
39 BRzp L4
40 STI R2,DDR ;Move cursor to new clean line
41
42;Restore
43 LD R1,SaveR1 ;Service routine done, restore
44 LD R2,SaveR2 ;original values in registers.
45 LD R3,SaveR3 ;
46; LD R7,SaveR7 ;Restore linkage back
47; ;prior to RET?
48 RET ;Return to calling program

Label LDI R3,DSR
BRzp Label
STI Reg,DDR

A simple illustration of a part of a program

2023/12/10 7

49;Memory for registers saved
50; SaveR7 .FILL x0000
51 SaveR1 .FILL x0000
52 SaveR2 .FILL x0000
53 SaveR3 .FILL x0000
54
55 DSR .FILL xF3FC
56 DDR .FILL xF3FF
57 KBSR .FILL xF400
58 KBDR .FILL xF401
59 ;
59 Newline .FILL x000A ;ASCII code for newline
60 Prompt .STRINGZ ”Input a character>”
61 .END

The Call/Return Mechanism

2023/12/10 8

A

A

A

A

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Control Instructions for Subroutines

2023/12/10 10

1 1 1 1 0 0 0 0 TrapVector8TRAP

0 0 0 0 n z p PCoffset9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 PCoffset11

0 1 0 0 0 0 0 BaseR 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BR

JSRR

RTI

JSR

1 1 0 0 0 0 0 BaseR 0 0 0 0 0 0JMP

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0RET

2023/12/10 11

JSR (PC-Relative)

R0

R2

R5

R1

R3

R4

R6

R7

Register File 0 0 0 0 0 1 1 0 0 10 1 0 0 0 0PC

0 0 0 0 0 0 0 0 0 10 0 0 1 1 0
IR

IR[10:0]=00000000001

+A B

SEXT

①

PCMUXJust like JMP (but PC is saved in R7)
Why not just use TRAP?

0 0 0 0 0 1 1 0 0 10 1 0 0 0 0

Note: This is PC
of next instruction

②

This one means ”PC-Relative mode”

2023/12/10 12

JSRR (Register)

This zero means ”register mode”

PCMUX

Virtues of JSRR?

R0

R2

R5

R1

R3
R4

R6
R7

Register File

0 0 0 0 0 1 1 0 0 10 1 0 0 0 0

0 1 0 1 0 0 0 0 0 10 0 0 1 0 0IR

①

②
0 0 0 0 0 1 1 0 0 00 0 0 0 1 0

0 0 0 0 0 1 1 0 0 10 1 0 0 0 0PC

Note: This is PC
of next instruction

2023/12/10 13

RET instruction

nRET – return instruction

lHow to return

— Place address in R7 in PC, Return the execution to the last calling point.

lPC ¬ (R7)

1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 RET
(JMP R7)

1 1 1 0 0 0 0 0 0

2023/12/10 14

Example: Negate the value in R0

TwosComp NOT R0,R0 ;flip bits

ADD R0,R0,#1 ;add one

RET ;return to caller

;need to compute R4 = R1-R3
ADD R0,R3,#0 ;copy R3 to R0
JSR TwosComp ;negate
ADD R4,R1,R0 ;add to R1
...

To call from a program

2023/12/10 15

Using Subroutines

nProgrammer must know

lAddress: or at least a label that will be bound to its address

lFunction: what it does

— NOTE: The programmer does not need to know how the subroutine works, but what changes are visible in the

machine’s state after the routine has run

lArguments: what they are and where they are placed

lReturn values: what they are and where they are placed

2023/12/10 16

Passing Information To Subroutines

nArgument(s)

lValue passed in to a subroutine is called an argument

lThis is a value needed by the subroutine to do its job

lExamples

— TwosComp: R0 is number to be negated

— OUT: R0 is character to be printed

— PUTS: R0 is address of string to be printed

nHow?

lIn registers (simple, fast, but limited number)

lIn memory (many, but awkward, expensive)

lBoth

2023/12/10 17

Getting Values From Subroutines

nReturn Values

lA value passed out of a subroutine is called a return value

lThis is the value that you called the subroutine to compute

lExamples

— TwosComp: negated value is returned in R0

— GETC: character read from the keyboard is returned in R0

nHow?

lRegisters, memory, or both

lSingle return value in register most common

A problem when dealing with subroutines

nWe have known that every time an instruction loads a value into a register, the value

that was previously in that register is lost. Thus, we need to save the value in a

register

lif that value will be destroyed by some subsequent instruction, and

lif we will need it after that subsequent instruction.

nCaution Using JSR, JSRR, and TRAP

lYou MUST save R7 if you call any other subroutine using JSR,JSRR or

TRAP

2023/12/10 20

Caution Using TRAPs (“caller-save” in User code)

LEA R3,BLOCK ;Init. To first loc.
LD R6,ASCII ;Char->digit template
LD R7,COUNT ;Init. to 10

AGAIN TRAP x23 ;Get char
ADD R0,R0,R6 ;Convert to number
STR R0,R3,#0 ;Store number
ADD R3,R3,#1 ;Incr pointer
ADD R7,R7,-1 ;Decr counter
BRp AGAIN ;More?
BRnzp NEXT_TASK

ASCII .FILL xFFD0 ;Negative of x0023
COUNT .FILL #10
BLOCK .BLKW #10

2023/12/10 21

Caution Using TRAPs (“caller-save” in User code)

LEA R3,BLOCK ;Init. To first loc.
LD R6,ASCII ;Char->digit template
LD R7,COUNT ;Init. to 10

AGAIN ST R7,SaveR7
TRAP x23 ;Get char
LD R7,SaveR7
ADD R0,R0,R6 ;Convert to number
STR R0,R3,#0 ;Store number
ADD R3,R3,#1 ;Incr pointer
ADD R7,R7,-1 ;Decr counter
BRp AGAIN ;More?
BRnzp NEXT_TASK

SaveR7 .BKLW 1
ASCII .FILL xFFD0 ;Negative of x0023
COUNT .FILL #10
BLOCK .BLKW #10

2023/12/10 22

Saving and Restoring Registers

n Called routine => “callee-save”

l Before start, save registers that will be altered

(except output regs)

l Before return, restore those same registers

(again, except output regs)

l Values are saved by storing them in memory

n Calling routine => “caller-save”

l If register value needed later, save register destroyed by own instructions or

by called routines (if known)

— Save R7 before TRAP

l Or avoid using those registers altogether

n LC-3: By convention, callee-saved when possible

l Other ISAs use a more efficient combination of caller- and callee-save

2023/12/10 23

Saving and Restore Registers

nLike service routines, must save and restore registers

lWho saves what is part of the calling convention

nGenerally use “callee-save” strategy, except for return values

lSame as trap service routines

lSave anything that subroutine alters internally that shouldn’t be

visible when the subroutine returns

lRestore incoming arguments to original values (unless overwritten by

return value)

nRemember

lYou MUST save R7 if you call any other subroutine or trap

lOtherwise, you won’t be able to return!

2023/12/10 24

Subroutine Template

01 SUB_NAME
02 ;Register Saving
03 ST R0, SUB_R0
04 ST R1, SUB_R1
05 …
06 ST R6, SUB_R6
07 ST R7, SUB_R7;Return address
08
09 ;***Code***
10
11 ;Register Restoring
12 LD R0, SUB_R0
13 LD R1, SUB_R1
14 …
15 LD R6, SUB_R6
16 LD R7, SUB_R7 ;Return address
17 RET

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Review: Memory in Von Neumann Model

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk

2023/12/10 27

Review: Using Memory

nMemory

lJust a big “array”

l“Indexed” by address

lAccessed with loads and stores instructions

nLD/LDR/LDI

lRead a word out of memory

lUse different addressing mode

nST/STR/STI

lPlace a word in memory

lUse different addressing mode

2023/12/10 28

Review: Using Memory

nProblem

lWhat if the memory you want to access is far away?

lLD/ST won’t work (PC-relative)

lLDR/STR won’t work alone (need to get address in register)

nSolution: LDI/STI

lPlace address of far away value nearby

lLoad address, then load/store from that

Memory Model for Function Calls

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk

Problem

2023/12/10 30

nHow do we allocate memory during the execution of a program written in C?

lPrograms need memory for code and data such as instructions, global

and local variables, etc.

lModern programming practices encourage many (reusable) functions,

callable from anywhere.

lSome memory can be statically allocated, since the size and type is

known at compile time.

lSome memory must be allocated dynamically, size and type is unknown

at compile time.

Motivation

nWhy is memory allocation important? Why not just use a memory manager?

lAllocation affects the performance and memory usage of every C, C++,

Java program.

lCurrent systems do not have enough registers to store everything

that is required.

lMemory management is too slow and cumbersome to solve the problem.

lStatic allocation of memory resources is too inflexible and

inefficient, as we will see.

2023/12/10 31

Goals

nWhat do we care about?

lFast program execution

lEfficient memory usage

lAvoid memory fragmentation

lMaintain data locality

lAllow recursive calls

lSupport parallel execution

lMinimize resource allocation

lMemory should never be allocated for functions that are not executed.

2023/12/10 32

Scope: Local vs. Global

nA variable’s declaration assists the compiler in managing the storage of that

variable.

n In C, a variable’s declaration conveys three pieces of information to the compiler:

lthe variable’s identifier and its type

— The first two of these, identifier and type, the C compiler gets explicitly from the variable’s declaration.

lthe variable’s scope————

— The third piece, scope, the compiler infers from the position of the declaration within the code.

The scope of a variable is the region of the program in which the variable is “alive” and accessible.

— The good news is that in C, there are only two basic types of scope for a variable. Either the variable is global to the

entire program, or it is local, or private, to a particular block of code.

A C program that demonstrates nested scope.

1 #include <stdio.h>
2
3 int globalVar = 2; // This variable is a global variable
4
5 int main(void)
6 {
7 int localVar = 3; // This variable is local to main
8
9 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
10
11 // Creating a new sub-block within main
12 {
13 int localVar = 4; // This local to the sub-block within main
14
15 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
16 }
17
18 printf("globalVar = %d, localVar = %d\n", globalVar, localVar);
19 }

C allows this: as long as the different
variables sharing the same name are
declared in separate blocks.

globalVar = 2, localVar = 3
globalVar = 2, localVar = 4
globalVar = 2, localVar = 3

If we compile and execute this code, the output generated looks as follows:

Initialization of Variables

double width;

double pType = 9.44;

double mass = 6.34E2;

double verySmallAmount = 9.1094E-31;

double veryLargeAmount = 7.334553E102;

int average = 12;

int windChillIndex = -21;

int unknownValue;

int mysteryAmount;

bool flag = false;

char car = 'A’; // single quotes specify a single ASCII character

char number = '4’; // single quotes specify a single ASCII characte

What initial value will a variable have if it has no
initializer? In C, by default,
l Local variables start with an undefined
value. That is, local variables have
garbage values in them, unless we
explicitly initialize them in our code.
It is standard coding practice to
explicitly initialize local variables
within their declarations.

l Global variables, in contrast, are
initialized to 0.

Memory Model in the LC-3

2023/12/10
36

PC

R4(Global pointer)

R6 (stack pointer)

Device Register
Addresses

0x0000

0xFFFF

Trap Vector Table

Interrupt Vector Table

Operating System
and Supervisor Stack

0x00FF
0x0100

0x01FF
0x0200

0x2FFF
0x3000

0xFDFF
0xFE00

Run-time stack

Program Text

Global data section

Heap (for dynamically
allocated memory)

R5 (frame pointer)

R5
Function2

R6
R5

R6

Function3

Function1

R5

R6

Allocating Space for Variables

nThere are two regions of memory in which declared variables in C are allocated

storage:

lthe global data section: Variables that are global are allocated

storage in the global data section.

lthe run-time stack: Local variables are allocated storage on the

run-time stack.

A C program that performs a simple network rate calculation

1 #include <stdio.h>
2 int main(void)
3 {
4 int amount; // The number of bytes to be transferred
5 int rate; // The average network transfer rate
6 int time; // The time, in seconds, for the transfer
7 int hours; // The number of hours for the transfer
8 int minutes; // The number of mins for the transfer
9 int seconds; // The number of secs for the transfer
10
11 // Get input: number of bytes and network transfer rate
12 printf("How many bytes of data to be transferred? ");
13 scanf("%d", &amount);
14 printf("What is the transfer rate (in bytes/sec)? ");
15 scanf("%d", &rate);
16
17 // Calculate total time in seconds
18 time = amount / rate;
19
20 // Convert time into hours, minutes, seconds
21 hours = time / 3600; // 3600 seconds in an hour
22 minutes = (time % 3600) / 60; // 60 seconds in a minute
23 seconds = ((time % 3600) % 60); // remainder is seconds
24
25 // Output results
26 printf("Time : %dh %dm %ds\n", hours, minutes, seconds);
27 }

The compiler’s
symbol table when
it compiles the code

n The stack frame from function

main of the code

l This function has five local

variables.

l R5 is the frame pointer and

points to the first local

variable.

Outline

Review1

Subroutines2

Control Instructions for Subroutines3

Memory Model for Program Execution4

The Stack5

Implementing Functions in C6

Stack: An Abstract Data Type

nAn important abstraction that you will encounter in many applications.

nThe fundamental model for execution of C, Java, Fortran, and many other languages.

nWe will describe two uses of the stack:

lEvaluating arithmetic expressions

— Store intermediate results on stack instead of in registers

lFunction calls

— Store parameters, return values, return address, dynamic link

— Interrupt-Driven I/O

— Store processor state for currently executing program

2023/12/10 40

2023/12/10 41

Stack Data Structure

nA LIFO (last-in first-out) storage structure

lThe first thing you put in is the last thing you take out

lThe last thing you put in is the first thing you take out

lThis means of access is what defines a stack, not the specific

implementation.

nTwo main operations

lPUSH: add an item to the stack

lPOP: remove an item from the stack

nError conditions:

lUnderflow (try to pop from empty stack)

lOverflow (try to push onto full stack)

nA register (eg. R6) holds address of top of stack (TOS)

2023/12/10 42

A Physical Stack

nCoin holder

Last quarter in is the first quarter out (LIFO)

1995 1996
1998
1982
1995

1998
1982
1995

Initial State After
One Push

After Three
More Pushes

After
One Pop

A Hardware Stack Implementation

nData items move between registers

2023/12/10 43

/ / / / / /
/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

YesEmpty:

TOP #18
/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

NoEmpty:

TOP #12
#5

#31

#18

/ / / / / /

NoEmpty:

TOP #31
#18

/ / / / / /

/ / / / / /

/ / / / / /

NoEmpty:

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

2023/12/10 44

A Software Stack Implementation

nData items don't move in memory, just our idea about where TOP of the stack is

By convention, R6 holds the Top of Stack (TOS) Pointer (SP)

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /
/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

TOP

x4000 R6

/ / / / / /
/ / / / / /

/ / / / / /

/ / / / / /

#18 TOP

x3FFF R6

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /
#12

#5

#31

#18

x3FFC R6

TOP
x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /

#12

#5

#31
#18

TOP

x3FFE R6

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

2023/12/10 45

Basic Push and Pop Code

n Note: Stacks can grow in either direction (toward higher address or toward lower addresses)

PUSH
ADD R6, R6, #-1 ; increment stack ptr
STR R0, R6, #0 ; store data(R0) to TOS

POP
LDR R0, R6, #0 ; load data(R0) from TOS
ADD R6, R6, #1 ; decrement stack ptr

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /

/ / / / / /
/ / / / / /

/ / / / / /

/ / / / / /

TOP

x4000 R6

/ / / / / /

/ / / / / /
/ / / / / /

/ / / / / /

#18 TOP

x3FFF R6

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /

#12
#5

#31

#18

x3FFC R6

TOP
x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

/ / / / / /
#12

#5

#31

#18

TOP

x3FFE R6

x3FFB

x3FFC

x3FFD

x3FFE

x3FFF

x4000

2023/12/10 46

Pop with Underflow Detection

n If we try to pop too many items off the stack, an underflow condition occurs.

lCheck for underflow by checking TOS before removing data.

lReturn status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY
ADD R2, R6, R1 ; Compare stack pointer
BRz UNDER ; with x3FFF
LDR R0, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
AND R5, R5, #0 ; Success: return R5 = 0
RET

UNDER AND R5, R5, #0 ; Underflow: return R5 = 1
ADD R5, R5, #1
RET

EMPTY .FILL xC000 ; EMPTY = -x4000

2023/12/10 47

Push with Overflow Detection

n If we try to push too many items onto the stack, an overflow condition occurs.

lCheck for underflow by checking TOS before adding data.

lReturn status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, FULL
ADD R2, R6, R1 ; Compare stack pointer
BRz OVER ; with x4004
ADD R6, R6, #-1 ; Adjust stack pointer
STR R0, R6, #0 ; The actual ‘push’
AND R5, R5, #0 ; Success: return R5 = 0
RET

OVER AND R5, R5, #0

ADD R5, R5, #1 ; Overflow: return R5 = 1
RET

FULL .FILL xC005 ; FULL = -x3FFB

2023/12/10 48

The final code for PUSH & POP in LC-3 - 1

POP ST R2,Save2 ; save, needed by POP
ST R1,Save1 ; save, needed by POP
LD R1, EMPTY ; EMPTY contains –x3FFF
ADD R2, R6, R1 ; Compare stack pointer with x3FFF
BRz Fail_exit ; Branch if stack empty
LDR R0, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
RET

EMPTY .FILL xC000 ; EMPTY = -x4000
PUSH ST R2,Save2 ; save, needed by PUSH

ST R1,Save1 ; save, needed by PUSH
LD R1, FULL
ADD R2, R6, R1 ; Compare stack pointer
BRz Fail_exit ; with x4004
ADD R6, R6, #-1 ; Adjust stack pointer
STR R0, R6, #0 ; The actual ‘push’
RET

FULL .FILL xC005 ; FULL = -x3FFB

2023/12/10 49

The final code for PUSH & POP in LC-3 - 1

POP ST R2,Save2 ; save, needed by POP
ST R1,Save1 ; save, needed by POP
LD R1, EMPTY ; EMPTY contains –x3FFF
ADD R2, R6, R1 ; Compare stack pointer with x3FFF
BRz Fail_exit ; Branch if stack empty
LDR R0, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
BRnzp Success_exit

EMPTY .FILL xC000 ; EMPTY = -x4000
PUSH ST R2,Save2 ; save, needed by PUSH

ST R1,Save1 ; save, needed by PUSH
LD R1, FULL
ADD R2, R6, R1 ; Compare stack pointer
BRz Fail_exit ; with x4004
ADD R6, R6, #-1 ; Adjust stack pointer
STR R0, R6, #0 ; The actual ‘push’
BRnzp Success_exit

FULL .FILL xC005 ; FULL = -x3FFB

2023/12/10 50

The final code for PUSH & POP in LC-3 - 2

Save1 .FILL x0000
Save2 .FILL x0000
Success_exit LD R1, Save1 ;Restore reg values

LD R2, Save2 ;
AND R5, R5, #0 ; Success: return R5 = 0
RET

;
Fail_exit LD R1, Save1 ;Restore reg values

LD R2, Save2
AND R5, R5, #0
ADD R5, R5, #1 ; Overflow: return R5 = 1
RET

2023/12/10 51

Arithmetic Using a Stack

nInstead of registers, some ISA's use a stack for source and destination operations: a zero-address
machine.

l Example: ADD instruction pops two numbers from the stack, adds them, and pushes

the result to the stack.

ADD vs. ADD R0,R1,R2

nEvaluating (A+B)·(C+D) using a stack:

push A

push B

ADD

push C

push D

ADD

MULTIPLY

pop result
x3FFA

x3FFB
x3FFC
x3FFD
x3FFE
x3FFF

x3FFA

SP

(25+17) x (3+2)

