ITERFAMIEA

* @ @ é K l* é Introduction to Computing Systems

University of Science and Technolog yofChma (C51002A03)

Data Structures

B el . LW R e -

PRIRfL

cjuns@ustc.edu.cn
2023 Fall

HEMELHE KFR

School of Computer Science and Technology

Outline

Review

Subroutines

Control Instructions for Subroutines

Memory Model for Program Execution

The Stack

Implementing Functions in C

Outline

Review

n Subroutines

Control Instructions for Subroutines

Memory Model for Program Execution

The Stack

Implementing Functions in C

Subroutines

m A subroutine is a program fragment that. . .

® Resides in user space (i.e, not in O0S)

® Performs a well-defined task

® Is invoked (called) multiple times by a user program

® Returns control to the calling program when finished
m Virtues

® Reuse code without re-typing it (and debugging it!)

® Divide task into parts (or among multiple programmers)

® Use vendor-supplied library of useful routines that one software engineer writes a

program that requires such fragments and another software engineer writes the fragments.
— math library
— square rooft, sine, and arctangent, etc.
mIn C language, called function; In other languages, called procedures, subroutines,
methods ...

A simple illustration of a part of a program

01; Service Routine for Keyboard Input

02 .ORIG x04A0 ;System call starting address

03

04 ;START ST R7,SaveR7 ;Save the linkage back to the

05; ;program?

06 ST R1l,SaveR1l ;Save the values in the registers

07 ST R2 ,SaveR2 ;that are used so that they can

08 ST R3,SaveR3 ;be restored before RET

09 Label ILDI R3,DSR
10;0utput Newline on CRT BRzp Label
11 ID__ _ _ R2,Newline_ _ STI Reg,DDR
12 1.1 1 LDI R3,DSR r' ;Check DDR—is it free"’

13 1 BRzp L1 : ;Loop until monitor ready

14 ISTT _ R2,DDR ;Move cursor to clean line

15;

16,;0utput “Input a character”

17 LEA R1l,Prompt 5 1s starting address

18 ; rompt string

19 Loop LDR RO,R1,#0 ;Get next prompt character

20 _BRzp _ _ Igpyg______ ;Check for end of prompt string

21 12 1 LDI R3,DSR I

22 I BRzp L2 I

23 ISTTI _ _RO,DDR ;Write next character of prompt

24 ;string

25 ADD R1,R1,#1 ;Increment prompt point

26 BRnzp Loop

2023/12/10 5

A simple illustration of a part of a program

27;Input a character from KB

28 Input LIDI R3,KBSR ;Has a character been typed?

29 BRzp Input Label LDI R3,DSR
30 LDI RO, KBDR ;Load it into RO BRzp Label
31 STI Reg,DDR
32;Echo the character on CRT

33 L3 LDI R3,DSR

34 1 BRzp L3

35 ISTI _ _ _RO,DDR__ _ _ ut character to the

36 itor

37;O0utput_Newline on CRT _ _ _

38 14 1 LDI R3,DSR I ;Check CRTDR—is it free?

39 I BRzp L4 I

40 ISTI __ _R2,DDR__ ;Move cursor to new clean line

41

42 ;Restore

43 1D R1l,SaveR1l ;Service routine done, restore

44 LD R2,SaveR2 ;original values in registers.

45 1D R3,SaveR3 ;

46; LD R7,SaveR7 ;Restore linkage back

47 ; ;prior to RET?

48 RET ;Return to calling program

2023/12/10 6

A simple illustration of a part of a program

49 ;Memory for registers

50;
51
52
53
54
55
56
57
58
59 ;
59
60
61

2023/12/10

SaveR7
SaveR1l
SaveR2
SaveR3

DSR
DDR
KBSR
KBDR

Newline
Prompt

.FILL
.FILL
.FILL
.FILL

.FILL
.FILL
.FILL
.FILL

.FILL
.STRINGZ "Input a character>”
.END

saved
x0000
x0000
x0000
x0000

xF3FC
xF3FF
xF400
xF401

x000A

;ASCII code for newline

The Call/Return Mechanism

2023/12/10

(a) Without subroutines

X OO (O
Call — ;
- A
b Return
Call @ @ @
5 -
Call —
W

(b) With subroutines

Outline

Review

Subroutines

H Control Instructions for Subroutines

Memory Model for Program Execution

The Stack

Implementing Functions in C

Control Instructions for Subroutines

151413121110 9 8 7 6 5 4 3 2 1 0
BR 0O 0O 0 O HimwaN: PCoffset9

JSR O 1 00 1 PCoffset11

JSRR R RRRNE O O] BaseR (0|0 /0(0|0]|O0

RTI (BRORRRNN 0 0 0|0/ 0|0|O0O|O0O|0]O0O|0|O

JMP (R ERRNN 0 0O 0| BaseR (000|000

RET (AR 0 0 0|1/1/1{0/0[{0]0|0/O0

TRAP

000 TrapVector8

2023/12/10 10

JSR (PC-Relative)

l— This one means ”PC-Relative mode”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
JSR (01 0 01 PCoffsetll
Note: This is PC
Register File of next instruction | PC |0/1/0/0/0/0/0/0/0/0/0/1|1/0/0/1
RO @
R1
R2 NI 1(0(0(0(0(0|0|0|0|0|0]|1
IR
R3
IR[10:0]=00000000001
R4
R SEXT ®
R6 A B
R7 |0|1|0(0/0|0|0|0|00|0|1|1|0[0|1 +
Just like JMP (but PC is saved in R7) / PCMUX \
Why not just use TRAP?

2023/12/10 "

JSRR (Register)

l— This zero means “register mode”

15 4 13 12 11 10 9 8 7 6 5 4 3 2 0
JSRR|0 10 0|{0/0 OjBase RO O OO0 OO
Register File
IR N0 o(o[1]0[1|0]0]0|0|0]1 RO
R1
R2
R3
R4 ®
R5 |0/0(0/0[1|0(0|0|0[0|0[1|1|0]0|0
R6
R7 |0[1|o|o|o]o|oo|o]o|o|1]1|0[o[1
Note: This is PC
ofoneext inlztlriction @ / PCMUX \
Virtues of JSRR?

PC |0|1|0/0(0|0|O0O0|O|O1({1|0(0(1

2023/12/10 12

RET instruction

B RET - return instruction

®How to return

— Place address in R7 in PC, Return the execution to the last calling point.

®PC « (R7)

15141312 11 10 9 8 7 65 4 3 2 1 0

RET 1100(000/111/000000
(JMP R7)

2023/12/10 13

Example: Negate the value in RO

2023/12/10

TwosComp NOT RO,RO
ADD RO,RO, #1

RET

;£lip bits
;add one

;return to caller

To call from a program

;need to compute R4 = R1-R3
ADD RO,R3,#0
JSR TwosComp
ADD R4 ,R1,R0

;copy R3 to RO
;negate
;add to R1

14

Using Subroutines

B Programmer must know

® Address: or at least a label that will be bound to its address

® Function: what it does

— NOTE: The programmer does not need to know how the subroutine works, but what changes are visible in the

machine’ s state after the routine has run
®Arguments: what they are and where they are placed

®Return values: what they are and where they are placed

2023/12/10 15

Passing Information To Subroutines

B Argument(s)
®Value passed in to a subroutine is called an argument
®This is a value needed by the subroutine to do its job

® Examples
— TwosComp: RO is number to be negated
— OUT: RO is character to be printed

— PUTS: RO is address of string to be printed
mHow?
®In registers (simple, fast, but limited number)
®In memory (many, but awkward, expensive)

®Both

2023/12/10 16

Getting Values From Subroutines

B Return Values
®A value passed out of a subroutine is called a return value
®This is the value that you called the subroutine to compute

® Examples

— TwosComp: negated value is returned in RO

— GETC: character read from the keyboard is returned in RO
EHow?
® Registers, memory, or both

®Single return value in register most common

2023/12/10 17

A problem when dealing with subroutines

B We have known that every time an instruction loads a value into a register, the value
that was previously in that register is lost. Thus, we need to save the value in a

register
®if that value will be destroyed by some subsequent instruction, and
®if we will need it after that subsequent instruction.

m Caution Using JSR, JSRR, and TRAP

® You MUST save R7 if you call any other subroutine using JSR,JSRR or

TRAP

Caution Using TRAPs (‘caller-save” in User code)

AGAIN

ASCII
COUNT
BLOCK

LEA R3,BLOCK ;Init. To first loc.
LD R6 ,ASCII ;Char->digit template
LD R7,COUNT ;Init. to 10

TRAP x23 ;Get char

ADD RO,RO,R6 ;Convert to number
STR RO,R3, #0 ;Store number

ADD R3,R3,#1 ;Incr pointer

ADD R7,R7,-1 ;Decr counter

BRp AGAIN ;More?

BRnzp NEXT TASK

.FILL xFFDO ;Negative of x0023
.FILL #10

.BLKW #10

2023/12/10

20

Caution Using TRAPs (‘caller-save” in User code)

LEA R3,BLOCK ;Init. To first loc.
1D R6 ,ASCII ;Char->digit template
LD R7,COUNT ;Init. to 10
AGAIN ST R7,SaveR’
TRAP x23 ;Get char
LD R7,SaveR7
ADD RO,RO,R6 ;Convert to number
STR RO,R3,#0 ;Store number
ADD R3,R3,#1 ;Incr pointer
ADD R7,R7,-1 ;Decr counter
BRp AGAIN ;More?
BRnzp NEXT TASK
SaveR7 .BKILW 1
ASCII .FILL xFFDO ;Negative of x0023
COUNT .FILL #10
BLOCK .BLKW #10

2023/12/10 21

Saving and Restoring Registers

m Called routine => “callee-save”
® Before start, save registers that will be altered
(except output regs)
® Before return, restore those same registers
(again, except output regs)
® Values are saved by storing them in memory
m Calling routine => “caller-save”

® If register value needed later, save register destroyed by own instructions or
by called routines (if known)

— Save R7 before TRAP

® Or avoid using those registers altogether
W [C-3: By convention, callee-saved when possible

® Other ISAs use a more efficient combination of caller- and callee-save

2023/12/10 22

Saving and Restore Registers

H Like service routines, must save and restore registers
® Who saves what is part of the calling convention
B Generally use “callee-save” strategy, except for return values
® Same as trap service routines

® Save anything that subroutine alters internally that shouldn’t be

visible when the subroutine returns

® Restore incoming arguments to original values (unless overwritten by

return value)
B Remember
® You MUST save R7 if you call any other subroutine or trap

® Otherwise, you won’t be able to return!

2023/12/10 23

Subroutine Template

01 SUB_NAME

02 ;Register Saving

03 ST RO, SUB RO

04 ST R1, SUB Rl

05 "

06 ST R6, SUB R6

07 ST R7, SUB_R7;Return address
08

09 ;***Code***

10

11 ;Register Restoring

12 ID RO, SUB RO

13 LD R1, SUB Rl

14 "

15 LD R6, SUB_R6

16 LD R7, SUB R7 ;Return address
17 RET -

2023/12/10 24

Outline

Review

Subroutines

Control Instructions for Subroutines

n Memory Model for Program Execution

The Stack

Implementing Functions in C

Review: Memory in Von Neumann Model

INPUT

Keyboard
Mouse
Scanner
Disk

MEMORY

MAR MDR

v

PROCESSING UNIT

TEMP

N

OUTPUT

Monitor
Printer
LED
Disk

CONTROL UNIT

PC > IR

Review: Using Memory

Memory
Address Value

x0000 x00A0
x0001 x5007

H Memory

® Just a big “array”

® “Indexed” by address

® Accessed with loads and stores instructions %0002 x0201
mLD/LDR/LDI x0003 x0203
® Read a word out of memory x0004 x3002

® Use different addressing mode

mST/STR/STI

XFFFC x25007
xFFFD x0201
xFFFE | X0203
xFFFF x3002

®Place a word in memory

® Use different addressing mode

2023/12/10 27

Review: Using Memory

H Problem

®What if the memory you want to access is far away?

®LD/ST won’t work (PC-relative)

® LDR/STR won’t work alone (need to get address in register)
m Solution: LDI/STI

® Place address of far away value nearby

® Load address, then load/store from that

xFEOO
.ORIG xw .ORIG x3000 x3020 | x0000
C e Co x3021 | xFEOQO
LD =3, SOMELAB LDI R2, SOMELAB
LDR R2 , #0 | = Coe xa022 | X0000
Coe T SOMELAB .FILL xFE0O o
SOMELAB .FILL xFEO0 ™~ Coe

\ . . xFE0D | x8000

h e,

Y — xFE01 | x0000

C5SE 240 \ T

2023/12/10 | At x3021 | x8000 28

Memory Model for Function Calls

INPUT

Keyboard
Mouse
Scanner
Disk

MEMORY

MAR MDR

v

PROCESSING UNIT

TEMP

N

CONTROL UNIT

PC > IR

OUTPUT

Monitor
Printer
LED
Disk

Problem

®How do we allocate memory during the execution of a program written in C?

® Programs need memory for code and data such as instructions, global

and local variables, etc.

®Modern programming practices encourage many (reusable) functions,

callable from anywhere.

® Some memory can be statically allocated, since the size and type is

known at compile time.

® Some memory must be allocated dynamically, size and type is unknown

at compile time.

2023/12/10 30

Motivation

B Why is memory allocation important? Why not just use a memory manager?

®Allocation affects the performance and memory usage of every C, C++,

Java program.

® Current systems do not have enough registers to store everything

that is required.
®Memory management is too slow and cumbersome to solve the problem.

®Static allocation of memory resources is too inflexible and

inefficient, as we will see.

2023/12/10 31

Goals

mWhat do we care about?
®Fast program execution
OEfficient memory usage
®Avoid memory fragmentation
®Maintain data locality
®Allow recursive calls
® Support parallel execution
O®Minimize resource allocation

®Memory should never be allocated for functions that are not executed.

2023/12/10 32

Scope: Local vs. Global

m A variable’ s declaration assists the compiler in managing the storage of that

variable.
mIn C, a variable’ s declaration conveys three pieces of information to the compiler:

® the variable’s identifier and its type

— The first two of these, identifier and type, the C compiler gets explicitly from the variable’s declaration.

® the variable’s scope

— The third piece, scope, the compiler infers from the position of the declaration within the code.

The scope of a variable is the region of the program in which the variable is “alive” and accessible.

— The good news is that in C, there are only two basic types of scope for a variable. Either the variable is global to the

entire program, or it is local, or private, to a particular block of code.

A C program that demonstrates nested scope.

WEIIERREED) SO0l C allows this: as long as the different
int globalvar = 2; // This variable is a global variable variables .Shanng the same name are
declared in separate blocks.

{

1

2

3

4

5 int main (void)
6

7 int localvar = 3; // This variable is local to main
8

9 printf ("globalvar = %d, localvar = %d\n", globalVar, /localVar) ;
10

11 // Creating a new sub-block within main

12 {

13 int localVar = 4; // This local to the sub-block within main
14

15 printf ("globalvVar = %d, localvVar = %d\n", globalvVar, localVar)
16 }

17

18 printf ("globalvVar = %d, localvar = %d\n", globalvVar, localVar) ;
19 }

If we compile and execute this code, the output generated looks as follows:

globalVar = 2, localVar = 3
globalvar = 2, localVar = 4
globalVar = 2, localVar = 3

Initialization of Variables

What initial value will a variable have if it has no
initializer? In C, by default,

double width;

double pType = 9.44; ® Local variables start with an undefined
value. That is, local variables have
double mass = 6.34E2; garbage values in them, wunless we
explicitly initialize them in our code.
double verySmallAmount = 9.1094E-31; It is standard coding practice to

explicitly initialize local variables
within their declarations.

int average = 12; Global variables, in contrast, are
initialized to O.

double veryLargeAmount = 7.334553E102;

int windChillIndex = -21;
int unknownValue;
int mysteryAmount;

bool flag = false;
char car = 'A’; // single quotes specify a single ASCII character

char number = '4’; // single quotes specify a single ASCII characte

Memory Model in the LC-3

2023/12/10

0x0000

0xO00FF
0x0100

0x01FF
0x0200

OxX2FFF
0x3000

OxFDFF
0xFEOQOO

OxXFFFF

Trap Vector Table

Interrupt Vector Table

Operating System
and Supervisor Stack

Program Text

Global data section

+«—— R4(Global pointer)

Heap (for dynamically
allocated memory)

Function1

Function2

Run-time stack

Device Register
Addresses

«— R5 (frame pointer)

Function3

36

Allocating Space for Variables

EThere are two regions of memory in which declared variables in C are allocated

storage:

® the global data section: Variables that are global are allocated

storage in the global data section.

® the run-time stack: Local variables are allocated storage on the

run-time stack.

A C program that performs a simple network rate calculation

1 #include <stdio.h>

2 int main(void) Identifier Type Location Scope Other S

3¢ (as an offset) no.. | The compiler’ s
4 int amount; // The number of bytes to be transferred _— - 5 . symbol table when
5 !nt r.ate; // The a'verage network transfer rate I - - s it compiles the code
6 inttime; // The time, in seconds, for the transfer

7 int hours; // The number of hours for the transfer minutes int -4 main

8 int minutes; // The number of mins for the transfer ate int 4 Al

9 int seconds; // The number of secs for the transfer

10 seconds int -5 main

11 // Get input: number of bytes and network transfer rate time int -2 main

12 printf("How many bytes of data to be transferred? ");

13 scanf("%d", &amount);

14 printf("What is the transfer rate (in bytes/sec)? "); B The stack frame from function T

15 scanf("%d", &rate); Location x0000

16 main of the code

17 // Calculate total time in seconds seconds
18 time = amount / rate; ® This function has five local minutes
19 . hours
20 // Convert time into hours, minutes, seconds variables. time
21 hours = time / 3600; // 3600 seconds in an hour ® R5 is the frame pointer and rate
22 minutes = (time % 3600) / 60; // 60 seconds in a minute RE — amount
23 seconds = ((time % 3600) % 60); // remainder is seconds points to the first local

24 variable. Location xFFFF

25 // Output results

26 printf("Time : %dh %dm %ds\n", hours, minutes, seconds);

27}

Outline

Review

Subroutines

Control Instructions for Subroutines

Memory Model for Program Execution

H The Stack

Implementing Functions in C

Stack: An Abstract Data Type

B An important abstraction that you will encounter in many applications.
B The fundamental model for execution of C, Java, Fortran, and many other languages.
mWe will describe two uses of the stack:

®Evaluating arithmetic expressions
— Store intermediate results on stack instead of in registers
® Function calls

— Store parameters, return values, return address, dynamic link

— Interrupt-Driven I/0

— Store processor state for currently executing program

2023/12/10 40

Stack Data Structure

m A LIFO (last-in first-out) storage structure
® The first thing you put in is the last thing you take out
® The last thing you put in is the first thing you take out

® This means of access is what defines a stack, not the specific

implementation.
B Two main operations
® PUSH: add an item to the stack
® POP: remove an item from the stack
m Error conditions:
® Underflow (try to pop from empty stack)
® Overflow (try to push onto full stack)
m A register (eg. R6) holds address of top of stack (TOS)

2023/12/10 41

A Physical Stack

H Coin holder

Initial State After After Three After
One Push More Pushes One Pop

Last quarter in is the first quarter out (LIFO)

2023/12/10 42

A Hardware Stack Implementation

m Data items move between registers

Empty: | Yes Empty: | No Empty: | No Empty: | No
/11111 |~—TOP #18 | —TOP #12 | —TOP #31 | TOP
11171 11111 #5 #18
[1111] 11111 #31 11111
111111 11111 #18 11171
11171 [1111] 111111 11111
Initial State After After Three After
One Push More Pushes Two Pops

2023/12/10 43

A Software Stack Implementation

m Data items don't move in memory, just our idea about where TOP of the stack is

x3FFB
x3FFC
x3FFD
x3FFE
x3FFF
x4000

2023/12/10

Iy

P

Iy

1111

iy

x4000

Initial State

—TOP

R6

x3FFB
x3FFC
x3FFD
x3FFE
x3FFF
x4000

e

Iy

Iy

Iy

#18

X3FFF

After

One Push

—TOP

R6

x3FFB
Xx3FFC
x3FFD
X3FFE
X3FFF
x4000

Iy

#12

F—TOP

#5

#31

#18

x3FFC

After Three

R6

More Pushes

x3FFB
x3FFC
x3FFD
x3FFE
x3FFF
x4000

By convention, R6 holds the Top of Stack (TOS) Pointer (SP)

11T

#12

#5

#31

#18

x3FFE

After

Two Pops

—TOP

R6

44

Basic Push and Pop Code

x3FFB | [/ 111/ x3FFB| // /1] x3FFB| ///11/ x3FeB | /11111
x3FFC | [/ /] X3FFC | [/ /]/] x3FFC| #12 —TOP ,3rrc| #12
x3FFD | /[/]]] x3FFD| [/ /[/]] x3FFD #5 x3FFD #5
X3FFE | /[/][] X3FFE | [/][]/ X3FFE #31 Xx3FFE #31 —TOP
X3FFF /11]]] X3FFF #18 —TOP X3FFF #18 x3FFF #18
x4000 —TOP x4000 x4000 x4000
x4000 |R6 x3FFF |R6 x3FFC |R6 x3FFE |R6
PUSH
ADD R6, R6, #-1 ; increment stack ptr
STR RO, R6, #0 ; store data(RO) to TOS
POP
LDR RO, R6, #0 ; load data(RO) from TOS
ADD R6, R6, #1 ; decrement stack ptr

B Note: Stacks can grow in either direction (toward higher address or toward lower addresses)

2023/12/10 45

Pop with Underflow Detection

mIf we try to pop too many items off the stack, an underflow condition occurs.
®Check for underflow by checking TOS before removing data.

®Return status code in R5 (0 for success, 1 for underflow)

POP LD R1l, EMPTY
ADD R2, R6, R1 ; Compare stack pointer
BRz UNDER ; with x3FFF
LDR RO, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
AND R5, R5, #0 ; Success: return R5 = 0
RET

UNDER AND R5, R5, #0 ; Underflow: return R5 =1
ADD R5, R5, #1
RET

EMPTY .FILL xCO00O ; EMPTY = -x4000

2023/12/10 46

Push with Overflow Detection

mIf we try to push too many items onto the stack, an overflow condition occurs.

®Check for underflow by checking TOS before adding data.

®Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1l, FULL
ADD R2, R6, R1 ; Compare stack pointer
BRz OVER ; with x4004
ADD R6, R6, #-1 ; Adjust stack pointer
STR RO, R6, #0 ; The actual ‘push’
AND R5, R5, #0 ; Success: return R5 = 0
RET

OVER AND R5, R5, #0
ADD R5, R5, #1 ; Overflow: return R5 =1
RET

FULL .FILL xC005 ; FULL = -x3FFB

2023/12/10 47

The final code for PUSH & POPin LC-3 -1

POP ST R2,SaveZ2 ; save, needed by POP
ST R1l,Savel ; save, needed by POP
LD R1l, EMPTY ; EMPTY contains —x3FFF
ADD R2, R6, R1 ; Compare stack pointer with x3FFF
BRz Fail exit ; Branch if stack empty
LDR RO, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
RET

EMPTY .FILL xCO000 ; EMPTY = -x4000

PUSH ST R2,SaveZ2 ; save, needed by PUSH
ST R1l,Savel ; save, needed by PUSH
LD R1l, FULL
ADD R2, R6, Rl ; Compare stack pointer
BRz Fail exit ; with x4004
ADD R6, R6, #-1 ; Adjust stack pointer
STR RO, R6, #0 ; The actual ‘push’
RET

FULL .FILL xCO005 ; FULL = -x3FFB

2023/12/10 48

The final code for PUSH & POPin LC-3 -1

POP ST R2,SaveZ2 ; save, needed by POP
ST R1l,Savel ; save, needed by POP
LD R1l, EMPTY ; EMPTY contains —x3FFF
ADD R2, R6, R1 ; Compare stack pointer with x3FFF
BRz Fail exit ; Branch if stack empty
LDR RO, R6, #0 ; The actual ‘pop’
ADD R6, R6, #1 ; Adjust stack pointer
BRnzp Success_exit

EMPTY .FILL xCO000 ; EMPTY = -x4000

PUSH ST R2,SaveZ2 ; save, needed by PUSH
ST R1l,Savel ; save, needed by PUSH
LD R1l, FULL
ADD R2, R6, Rl ; Compare stack pointer
BRz Fail exit ; with x4004
ADD R6, EG, #-1 ; Adjust stack pointer
STR RO, R6, #0 ; The actual ‘push’
BRnzp Success exit

FULL .FILL xCO005 B ; FULL = -x3FFB

2023/12/10 49

The final code for PUSH & POP in LC-3 - 2

Savel .FILL x0000

Save2 .FILL x0000

Success_exit LD Rl, Savel ;Restore reg values
LD R2, Save2 ;

AND R5, R5, #0 ; Success: return R5 = 0
RET

Fail exit ID Rl, Savel ;Restore reg values
LD R2, Save2
AND R5, R5, #0
ADD R5, R5, #1 ; Overflow: return R5 =1

2023/12/10 50

Arithmetic Using a Stack

mInstead of registers, some ISA's use a stack for source and destination operations: a zero-address
machine.
® Example: ADD instruction pops two numbers from the stack, adds them, and pushes
the result to the stack.
ADD vs. ADD RO,R1,R2

mEvaluating (A+B)+(C+D) using a stack:

- x3FFA
push B x3FFB
ADD x3FFC
push C x3FFD
push D x3FFE
ADD x3FFF
MULTIPLY

pop result X3FFA SP

2023/12/10 51

(25+17) x (3+2)

/11111 x3FFB /11111 x3FFB /1111] x3FFB
11111 x3FFC 1111 x3FFC /11111 x3FFC
11111 x3FFD 11111 x3FFD 11117 x3FFD
[111] x3FFE [111] x3FFE 17 x3FFE
/1111 x3FFF 25 x3FFF 25 x3FFF
x4000 Stack pointer x3FFF Stack pointer x3FFE Stack pointer
(a) Before (b) After first push (c) After second push
/11111 x3FFB /111117 x3FFB 11111 x3FFB
/11111 x3FFC /111117 x3FFC /11111 x3FFC
/1111 x3FFD /11111 x3FFD 2 x3FFD
17 x3FFE 3 x3FFE 3 x3FFE
42 x3FFF 42 x3FFF 42 x3FFF
x3FFF Stack pointer x3FFE Stack pointer x3FFD Stack pointer
(d) After first add (e) After third push (f) After fourth push
/11117 x3FFB /1111 x3FFB 11111 x3FFB
/11111 x3FFC /11111 x3FFC /1111 x3FFC
2 x3FFD 2 x3FFD 2 x3FFD
5 x3FFE 5 x3FFE 5 x3FFE
42 x3FFF 210 x3FFF 210 x3FFF
x3FFE Stack pointer x3FFF Stack pointer x4000 Stack pointer
(g) After second add (h) After multiply (i) After pop

